Oceans and Ice

Science, Observations, Technology

Chet Koblinsky NASA/GSFC

Presentation at NASA Earth Science Enterprise Technology Planning Workshop Arlington, Virginia January 23, 2001

Oceans and Ice Some NASA ESE Science Questions

- How is the global ocean circulation varying on interannual, decadal, and longer time scales?
- How can climate variation induce changes in the global ocean circulation?
- What changes are occurring in the mass of the Earth's ice cover?
- How global sea level affected by climate change?

Ocean Observations: A Vision

New era for oceanography Global, integrated, sustained Multi-purpose 👈

- · efficiency, broader investment base
- A system
 - Scientific, priorities
- A schedule of action
- Research and operational: working

trategy for a global ocean observing system based on the International Conference on Oce servations for Climate, 1999 is available at :

o://www.bom.gov.au/OceanObs99/Papers/Statement.pdf

Oceans and Ice Summary of Satellite Observables

Existing:

- Sea Surface Temperature, Winds, Topography
- Sea Ice Concentration, Extent, Motion
- Ice Sheet Topography, Velocity

Development:

- Sea Surface Salinity, Mixed Layer Depth
- Sea Ice Thickness
- Ice Sheet Thickness, Internal Temperature and Layers

Conclusions

Technologies Needed For Oceans and Ice 2005-2015

- Large Antenna
- Laser Technology
- Precision Navigation
- Formation Flying
- On Board Processing
- Communication
- IR Sensors
- Miscellaneous

Temperature, Salinity, Sea Ice

Mixed Layer Depth, Topography

Topography

Salinity, Winds, Topography

Sensor Webs

Sensor Webs

Temperature

100Mhz Radar, interferometry

"An important indictor of air-sea coupling and the most critical field for global coupled models"

Measurement Platforms

Processes affecting SST Measurement

Sea Surface Temperature

- 00-05 Plan: Continue merged products with IR, passive microwave, geostationary, and in situ observations
- 05-15 Challenges:
 - Accuracy (0.1K) AATSR/skin-bulk differences;
 - Coverage (all weather at 10km) passive microwave; and
 - Temporal resolution (resolve the diurnal cycle) Geostationary.
- Technology: Improved IR detectors, large steerable antenna for microwave, remove atmospheric effects through multi-frequency systems.
- Large Deployable, Lightweight Antenna; IR telescopes

Sea Surface Winds The primary ocean forcing function

Sea Surface Winds

- 00-05 Plan: 2 wind vector scatterometer satellites (NASA, ESA), test of passive microwave approach (Windsat-NRL)
- 05-15 Challenges:
 - Develop passive microwave approach (CMIS),
 - Improve coverage (3 day -> 3 hour), resolution (25km -> 5 km);
 - Remove directional ambiguity.
- Technology: Low mass multiple beam antenna-potentially using steerable antenna- deployable antenna configuration. Integration of interferometric velocity measurements into directional ambiguity resolution method. Polarimetric scatterometer. Formation flying.

Surface Topography

Monitoring ocean circulation and dynamic and global sea level changes.

Sea Surface Topography Anomaly, June, 1999

First View from Combined TOPEX, ERS-2, GFO

The ubiquitous ocean eddy field at scales of 25-250km lead to strong circulations that need to be resolved.

Surface Topography

- 00-05 Plan: 2 satellite altimeters (Jason-1, Envisat) and new gravity measurements (GRACE, GOCE)
- 05-15 Challenges:
 - Improve Resolution (<25km,10 days)
 - Resolve cross-track gradients to fully determine surface circulation
- Technology: Microwave altimeter, interferometer, radiometer, GPS Interferometric boom short-term stability, boom metrology, light/efficient amplifiers & receivers, onboard integrated processing, radiometer/radar antenna share.
- Precision Navigation, Formation Flying, Onboard Processing, Interferometry, Large antenna

Sea Surface Salinity

Understanding the impact of the global water cycle on the ocean and climate

hat is needed every week from space

What is available after 100 years of s

Sea Surface Salinity

Understanding the impact of the global water cycle on the ocean and climate

Science Impacts

r

Vertical cross—section of salinity in the Atlantic ba

The tropical barrier layer ENSO and the Monsoons

The thermohaline circulation The impact of high latitudes

The hydrologic cycle and the ocean

Sea Surface Salinity

- 00-05 Plan: Develop prototype (<0.1K, 100km, weekly),
- 05-15 Challenges:
 - Prototype in space,
 - 0.05°K Radiometric accuracy at L band,
 - improve radiometric calibration,
 - Multiple frequency approach to hydrologic cycle,
 - Improve resolution (10km) and coverage (daily).
- Technology: Large, lightweight, deployable, efficient, steerable antenna (5-10m); high accuracy multi-frequency radiometers (0.05K); microwave calibration.
- Large Antenna, Formation Flying (e.g., GPM)

New Challer

Detect the dethe upper occuboundary lay measuring the depth of the scattering lay with lidar

The mixed la Provides crit Information a Air-sea intera Heat, freshw And moment Exchanges, a As informati About upper Productivity.

Mixed Layer Depth

- 00-05 Plan: Development Connection between scattering layers and mixed layer depth, surface reflection, determine "eye safe" aperture and receiver size for space system
- 05-15 Challenges: Space experiment Space Station ?
- Technology: Large deployable, lightweight antenna; dynamic range of detectors; increase number of laser shots
- Laser Technology, Precision Navigation, Formation Flying

OLR Trend Running Mean

Sea Ice

Concentration, Extent, Motion, Thickness

- 00-05 Plan: Passive/active microwave (SSM/I, AMSR, SeaWinds, etc.). Thickness test w/ ESA Cryosat, ICESAT.
- 05-15 Challenges:
 - Improve resolution and coverage;
 - Extend to lower frequencies to sort out ice types
 (e.g. meltponds vs open water).
- Technology: <u>Large</u>, <u>lightweight</u>, <u>deployable steerable</u> <u>antenna</u>; compact, low-power electronics (MMIC, etc.)

Ice Sheets

the ice sheets growing or shrinking (direct effect on sea level)? at changes in the flow of the ice sheet will affect ice sheet size? at impact does ice-sheet discharge have on oceanic circulation and chemistry w do the bright, high-elevation ice sheets impact atmospheric circulation and s radiative balance?

Ice Stream Velocites from SAR on West Antarctic Ice Sheet

Ice Sheets Topography

- 00-05 Plan: ICESAT laser topography mission
- 05-15 Challenges: Follow on mission
 - Technology: Extended shot lasers (>10⁹), compact lidar system, stable laser sources, lightweight solar panels, pointing (metrology).
- Laser Technology, Precision Navigation (metrology)

Ice Sheets Characteristics

Layering at Siple Dome

- O0-05 Plan: Measure Ice Flow with SAR as available, Coarsely spaced ice thickness and subglacial characteristics from aircraft, rough estimates of accumulation.
- 05-15 Challenges:
 - More high latitude coverage (SAR) for monitoring ice stream flow,
 - Imaging ice penetrating SAR (50-200 Mhz) for internal layer structure.
- Technology: low frequency radar, <u>large antenna</u>, <u>navigation (metrology)</u>, <u>onboard processing</u>.

Summary

Technologies Needed For Oceans and Ice 2005-2015

- Large Antenna
- Laser Technology
- Precision Navigation
- Formation Flying
- On Board Processing
- Communication
- IR Sensors
- Miscellaneous

Temperature, Salinity, Sea Ice

Mixed Layer Depth, Topography

Topography

Salinity, Winds, Topography

Sensor Webs

Sensor Webs

Temperature

100Mhz Radar, interferometry